Recoding the genetic code with selenocysteine.
نویسندگان
چکیده
Selenocysteine (Sec) is naturally incorporated into proteins by recoding the stop codon UGA. Sec is not hardwired to UGA, as the Sec insertion machinery was found to be able to site-specifically incorporate Sec directed by 58 of the 64 codons. For 15 sense codons, complete conversion of the codon meaning from canonical amino acid (AA) to Sec was observed along with a tenfold increase in selenoprotein yield compared to Sec insertion at the three stop codons. This high-fidelity sense-codon recoding mechanism was demonstrated for Escherichia coli formate dehydrogenase and recombinant human thioredoxin reductase and confirmed by independent biochemical and biophysical methods. Although Sec insertion at UGA is known to compete against protein termination, it is surprising that the Sec machinery has the ability to outcompete abundant aminoacyl-tRNAs in decoding sense codons. The findings have implications for the process of translation and the information storage capacity of the biological cell.
منابع مشابه
Recode-2: new design, new search tools, and many more genes
'Recoding' is a term used to describe non-standard read-out of the genetic code, and encompasses such phenomena as programmed ribosomal frameshifting, stop codon readthrough, selenocysteine insertion and translational bypassing. Although only a small proportion of genes utilize recoding in protein synthesis, accurate annotation of 'recoded' genes lags far behind annotation of 'standard' genes. ...
متن کاملNovel structural determinants in human SECIS elements modulate the translational recoding of UGA as selenocysteine
The selenocysteine insertion sequence (SECIS) element directs the translational recoding of UGA as selenocysteine. In eukaryotes, the SECIS is located downstream of the UGA codon in the 3'-UTR of the selenoprotein mRNA. Despite poor sequence conservation, all SECIS elements form a similar stem-loop structure containing a putative kink-turn motif. We functionally characterized the 26 SECIS eleme...
متن کامل[Facile Recoding of Selenocysteine in Nature].
Selenocysteine (Sec or U) is encoded by UGA, a stop codon reassigned by a Sec-specific elongation factor and a distinctive RNA structure. To discover possible code variations in extant organisms we analyzed 6.4 trillion base pairs of metagenomic sequences and 24 903 microbial genomes for tRNA(Sec) species. As expected, UGA is the predominant Sec codon in use. We also found tRNA(Sec) species tha...
متن کاملPartitioning between recoding and termination at a stop codon–selenocysteine insertion sequence
Selenocysteine (Sec) is inserted into proteins by recoding a UGA stop codon followed by a selenocysteine insertion sequence (SECIS). UGA recoding by the Sec machinery is believed to be very inefficient owing to RF2-mediated termination at UGA. Here we show that recoding efficiency in vivo is 30-40% independently of the cell growth rate. Efficient recoding requires sufficient selenium concentrat...
متن کاملCharacterization of the UGA-recoding and SECIS-binding activities of SECIS-binding protein 2
Selenium, a micronutrient, is primarily incorporated into human physiology as selenocysteine (Sec). The 25 Sec-containing proteins in humans are known as selenoproteins. Their synthesis depends on the translational recoding of the UGA stop codon to allow Sec insertion. This requires a stem-loop structure in the 3' untranslated region of eukaryotic mRNAs known as the Selenocysteine Insertion Seq...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Angewandte Chemie
دوره 53 1 شماره
صفحات -
تاریخ انتشار 2014